
1. Getting started
Bring up a command line and run:

% rails -d sqlite3 squawkr
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
…

If you’re on a PC, leave off the “-d sqlite3” bit. The instant rails package only comes with
MySQL (which happens to be the Rails default as well).

Next, try running the built-in web server.

% script/server
=> Booting WEBrick…
=> Rails application started on http://0.0.0.0:3000
=> Ctrl-C to shutdown server; call with --help for options
[2007-03-28 22:39:12] INFO WEBrick 1.3.1
[2007-03-28 22:39:12] INFO ruby 1.8.6 (2007-03-13) […]
[2007-03-28 22:39:12] INFO WEBrick::HTTPServer#start: …

You may see alternative messages about something called “mongrel.” That’s OK. Mon-
grel is a newer alternative to webrick. Now try pointing your browser to
http://localhost:3000/. You should see the default rails screen.

Skillswap
 5th April 2007

1

2. The Model
Ask rails to generate some stubs for the model.

% script/generate model message
 exists app/models/
 exists test/unit/
 exists test/fixtures/
 create app/models/message.rb
 create test/unit/message_test.rb
 create test/fixtures/messages.yml
 create db/migrate
 create db/migrate/001_create_messages.rb

A number of files have been generated. Of particular importance are
app/models/message.rb (the model itself) and db/migrate/001_create_messages.rb
(the migration, used to create the table in the database).

Open up the db/migrate/001_create_messages.rb file in an editor and change the
self.up method to look like this.

 def self.up
 create_table :messages do |t|
 t.column :message, :string
 t.column :whom, :string
 t.column :created_on, :datetime
 end
 end

This specifies the database in a portable fashion. It’s really Ruby being used as a mini-
language.

Next, ask rails to create the database.

% rake db:migrate
(in /Users/dom/Documents/squawkr)
== CreateMessages: migrating ==
-- create_table(:messages)
 -> 0.0839s
== CreateMessages: migrated (0.0879s) ==

Skillswap
 5th April 2007

3

You can use the Rails console to play with the model now. It’s really useful for experiment-
ing with your objects (and Ruby in general).

% script/console
Loading development environment.
>> Message.find(:all)
=> []
>> msg = Message.create(:message => "hello")
=> #<Message:0x30f6ad8 …>
>> msg.message
=> "hello"
>> msg.created_on
=> Fri Mar 30 07:05:10 +0100 2007

There are methods on that object for each field in the table. There’s also an id method.
You can change a value by assigning it a value, e.g. msg.whom = “fred”. If you change
anything, don’t forget to call msg.save to send your changes back to the database.

Tip: Rails comes with another command, gem_server, which serves up documentation
through a browser. Try running it, and look at the active_record documentation. Within
that, choose the class ActiveRecord::Base to get a list of methods you can call on the ob-
ject in the console above. Alternatively, visit http://api.rubyonrails.org/ and look at the
same class.

Tip: Try running rake test:unit. You can see that the generator has also created a
minimal test suite for you. Look at test/unit/message_test.rb for more.

Skillswap
 5th April 2007

4

3. Scaffold
Rails provides a “quick and dirty” CRUD interface. To use it, do:

% script/generate scaffold Message
 exists app/controllers/
 exists app/helpers/
 create app/views/messages
 exists app/views/layouts/
 exists test/functional/
…

The visit http://localhost:3000/messages. You should have an interface to list, add, edit
and delete messages. It’s very basic, but is a good start for building on. The main files of
interest are app/controllers/messages_controller.rb and app/views/*.rhtml.

Skillswap
 5th April 2007

5

4. Another controller
The scaffold is great, but it’s probably overkill for a simple interface like this. Let’s start
from a fresh perspective.

% script/generate controller Squawk
 exists app/controllers/
 exists app/helpers/
 create app/views/squawk
 exists test/functional/
 create app/controllers/squawk_controller.rb
 create test/functional/squawk_controller_test.rb
 create app/helpers/squawk_helper.rb

This gives you a completely blank controller to work in. Let’s add an index action (an ac-
tion is any publically visible method in a controller). The default is “index,” just like
Apache. Edit app/controllers/squawk_controller.rb to look like this:

class SquawkController < ApplicationController
 def index
 @messages = Message.find(
 :all,
 :order => 'created_on DESC',
 :limit => 5
)
 end
end

That fetches the five most recent messages and stores them in a field. This is a little bit
verbose, and might be better done as a method on the Message class.

Next, we need to edit the view to display these messages. Create a new file,
app/views/squawkr/index.rhtml, and add this to it.

<h1>Recent Messages</h1>

 <% for msg in @messages %>

 <%=h msg.whom %>
 said
 <q><%=h msg.message %></q>

 <% end %>

Now you should be able to view this by visiting http://localhost:3000/squawk. There should
be a message in there already.

Skillswap
 5th April 2007

7

RHTML uses a similar syntax to ASP, JSP and others. <% %> runs code without inserting it
into the page. <%= %> runs code and puts it into the page. The “h” in front requests HTML
escaping.

Tip: There are no html or body tags here. If you want to add those, create a file
app/layouts/application.rhtml with them. In the middle where you want the page to
appear, say <% yield %>.

Skillswap
 5th April 2007

8

5. Adding messages
So far so good, but we need a way to add new messages in. Create the file
app/views/squawk/_form.rhtml and add this to it.

<% form_for :message,
 :url => { :action => 'add' } do |f| %>
 <%= f.text_field :whom, :size => 10 %>
 says
 “<%= f.text_field :message %>”
<% end %>

This is a “partial” in rails terminology. The name of a partial always starts with an under-
score. They can be included from other views, or sometimes used directly (often the case
with Ajax).

To use this partial, add the line <%= render :partial => 'form' %> to the bottom of
app/views/layout/index.rhtml. You should see a form appear at the bottom of the
page if you refresh the browser window.

In order to make the form work, we need to add another method to
app/controllers/squawk_controller.rb. Change the file to add in an “add” method.

class SquawkController < ApplicationController
 def index
 …
 end
 def add
 @message = Message.new(params[:message])
 if @message.save
 redirect_to :action => "index"
 else
 index
 render :action => "index"
 end
 end
end

There’s quite a bit going on here.

• Make a new Message object from the form parameters.

• Try to save that object in the database.

• If it saved correctly, redirect back to the index page.

• If it failed to save, attempt to display the same content as the index page.

That last point is somewhat unusual. The reason is that you need access to the object in
order to display validation errors. But to do that, we need to add some validation.

Skillswap
 5th April 2007

9

Open up the model, app/models/message.rb. Add an extra line so that it looks like this.

class Message < ActiveRecord::Base
 validates_presence_of :message, :whom
end

That will make rails automatically check that these fields are present and non empty before
saving to the database.

Rails can offer some assistance when there are errors. By using text_field and other
form helpers, each field will automatically get wrapped in <div
class=”fieldWithErrors”></div>, which you can use CSS to style.

You can also pull out the error messages. To try this, open app/views/squawk/_form.rhtml
and add the error_messages_for line.

<% form_for :message,
 :url => { :action => 'add' } do |f| %>
 <%= error_messages_for :message %>
 <%= f.text_field :whom, :size => 10 %>
 says
 “<%= f.text_field :message %>”
<% end %>

This generates something useful, but ugly. CSS can help as always. But finer grained
approaches are also possible.

Skillswap
 5th April 2007

10

6. Ajax
The magic buzzword! There are some useful helpers in Rails for performing Ajax where
needed. But first, we need to do a little bit of refactoring.

Let’s turn the body of the loop in the main view into a partial. Create the file
app/views/squawk/_message.rhtml with this contents:

 <%=h message.whom || 'Somebody' %>
 said
 <q><%=h message.message %></q>

Then change app/views/squawk/index.rhtml to look like this.

<h1>Recent Messages</h1>
<ul id="messages">
 <%= render :partial => 'message',
 :collection => @messages %>

<%= render :partial => 'form' %>

render has a nice shortcut for rendering the same partial over a list of things.

On to the Ajax. First of all, you need to include the JavaScript libraries that support it. Add
this line to the top of app/views/squawk/index.rhtml.

<%= javascript_include_tag :defaults %>

This pulls in Prototype and Script.aculo.us.

Next, change the form to use the Ajax helpers instead of the regular ones.

<% remote_form_for :message,
 :update => 'messages',
 :success => 'new Effect.Highlight("messages")',
 :url => { :action => 'add' } do |f| %>
 <%= error_messages_for :message %>
 <%= f.text_field :whom, :size => 10 %>
 says
 “<%= f.text_field :message %>”
<% end %>

The key change here is the call to remote_form_for. The :update says to change the
contents of the element with ID “messages” with what comes back from the server. The
:success is a bit of JavaScript to run on success. This example runs a yellow fade on the
same messages element that we just updated.

Skillswap
 5th April 2007

11

To finish off, we need to update the controller so it returns just the contents of the .
Open up app/controllers/squawk_controller.rb and change the “add” method so it
looks like this.

class SquawkController < ApplicationController
 def add
 @message = Message.new(params[:message])
 if @message.save
 if request.xhr?
 index
 render :partial => "message",
 :collection => @messages
 else
 redirect_to :action => "index"
 end
 else
 index
 render :action => "index"
 end
 end
end

When the request comes from Ajax, request.xhr? returns true. In that case, we return a
fragment of HTML, which replaces the original in the page.

This is getting rather too large, and needs refactoring. But we have to stop somewhere…

Skillswap
 5th April 2007

12

